»Ê¹Ú²ÊƱ

The fundamental materials science 

Condensed matter and material physics explore the make-up, interactions and physical properties of solid, crystalline, soft and liquid materials and structures. Condensed matter physics has played a key role in technological advances that have dramatically changed our lives. In addition to presenting rich and fascinating questions about the physical world, it is an area of physics with many real-world applications.  

Our ability to create new materials and structures—at smaller scales and large quantities—is linked to the advanced understanding of the magnetic, optical and electronic properties of condensed matter materials. The invention of transistors and semiconductor chips has led to the use of data storage, telecommunication and multi-media devices. Superconducting magnets are used in MRI tomography for medical diagnostics and solid-state sensors and detectors are used for space exploration.

Associated schools, institutes & centres

Impact

Our research is directed at characterising and understanding the fundamental properties and behaviour of natural and advanced materials to improve sustainability and manufacturing outcomes. Using an array of bulk, atomic, optical, and nuclear techniques, our research has application in a wide range of areas including:  

  • magnetic and electronic devices 
  • optical signal processing and data storage 
  • nanoscale functionality 
  • ionising radiation dosimetry and imaging 
  • magnetic refrigeration.